\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Algebra::Aluffi

Quotient group. From equivalence condition.

Under what conditions does an equivalence relation induce a quotient that is a group?

Quotient group

Let \( (G, \groupMul{G}) \) be a group. Let \( \sim \) be an equivalence relation on the set \( G \). Let \( \pi : G \to G / \!\sim \) be the quotient map induced by \( \sim \). Then \( (G/\!\sim, \groupMul{G/\!\sim}) \) is a group with operation:

\[ \pi(a) \groupMul{G/\!\sim} \pi(b) := \pi( a \groupMul{G} b) \]

iff \( \pi \) is [what?].

In turn, this is true of \( \pi \) iff:

[\[ \begin{align} \forall a, a', g \in G, & \\ & a \sim a' \implies \quad ? \quad \land \quad ? \; \end{align} \]]