\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Analysis::Tao::07. Series

Rearrangement of infinite series

A feature of finite series which we will recap here is that any rearrangement of the terms of the series does not affect the sum. For example:

\[ a_1 + a_2 + a_3 + a_4 = a_4 + a_1 + a_3 + a_2 \]

This comes from the first property of substitution:

If \( X \) is a finite set, \( f: X \rightarrow R \) is a function, and \( g : Y \rightarrow X \) is a bijection, then:

[...]

If we consider any bijection \( g \) from-to the same set \( \{ i \in \mathbb{Z} : n \le i \le m \} \), then we can say:

\[ \sum_{i=n}^{m} a_i = \sum_{i=n}^{m} a_{g(i)} \]

which is the basis for the rearrangement example above.

Can we rearrange the terms of an infinite series and get the same result? Yes and no.

  • An absolutely convergent series: [...]
  • Conditionally, but not absolutely convergent series: [...]