\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Analysis::Tao::05. The real numbers

Nested intervals property for reals

Nested interval property

A sequence of nested closed intervals of reals has a [something something].

In other words, if one considers a sequence of nested closed intervals \( (I_n)_{n=0}^{\infty} \) such that for each \( n \in \mathbb{N} \), \( I_n = [a_n, b_n] \) for some \( a_n, b_n \in \mathbb{R} \) and \( I_{n+1} \subseteq I_n \), then It holds that [\( \cap_{n=1}^{\infty} I_n \;\; ? \quad  ? \;\;  \)].

Proof on the reverse.