\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Group. Definition.

Groups. Categorical definition.

A group is a [something with a what?].

More specifically, a group is the set [of what of a something].

Recall that a groupoid is a category where every morphism is an isomorphism.

Now the usual approach.

Groups. Standard definition.

A group \( (G, \bullet) \) is a set \( G \) and a function \( \bullet : G \times G \to G \) (called a binary operation) where the following three properties are satisfied:

Associativity

\( \bullet \) is associative,

[\[ ? \]]
Identity

There exists an identity element denoted \( e_G \) for \( \bullet \),

[\[ ? \]]
Inverse
Every element of \( G \) has an inverse with respect to \( \bullet \),

[\[ ? \]]