\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \)
Math and science::Algebra::Aluffi

Groups. Order for commutative product.

Order for commutative product

If \( gh = hg \), then \( |gh| \) divides \( \operatorname{lcm}(\; |g|, \; |h| \;) \).


Proof

Let \( N = \operatorname{lcm}(\; |g|, \; |h| \; ) \).

\[ \begin{align} (gh)^N &= g^Nh^N && \text{(by commutitivity)} \\ &= e \; e && \text{(as both $|g|$ and $|h|$ divide $N$)} \\ &= e \end{align} \]

By Lemma 1.10 in Aluffi, it follows that \( |gh| \) divides \( \operatorname{lcm}(\; |g|,\; |h| \;) \).

Example of not-equal

The proposition states "divides" and doesn't say "equal". Some examples where equality does not hold:

  • If \( h = g^{-1} \), then \( |gh| = 1 \), regardless of \( |g| \).
  • If \( g = [1]_{10} \) and \( h = [4]_{10} \) then \( ghgh = [0]_{10} \), so \( |gh| = 2 \), but \( |g| = 10 \) and \( |h| = 5 \).

Condition for equality

If \( g \) and \( h \) commute and \( \operatorname{gcd}(|g|, |h|) = 1 \), then \( |gh| = |g| |h| \).

Proof:

Is there a nice visualization for this?