\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \)
Math and science::Algebra::Aluffi

Groups. Some properties of order.

Property 1

Suppose that \( g^2 = e \) for all elements \( g \) in group \( G \). Then we can say that \( G \) is commutative.

Property 2

Suppose \( g \) is an element with odd order. Then \( |g^2| = |g| \)?

Property 3

The order of \( [m]_n \) in \( \mathbb{Z}/n\mathbb{Z} \) is 1 if \( n | m \), and more generally:

\[ | [m]_n| = \frac{n}{\operatorname{gcd}(m, n)} \]

Property 4

Following from property 4:

  • The class \( [m]_n \) generates \( \mathbb{Z}/nZ \) iff \( \operatorname{gcd}(m, n) = 1 \).
  • the order of every element of \( \mathbb{Z}/n\mathbb{Z} \) divides \( n \), which is the order, \( |\mathbb{Z}/n\mathbb{Z}| \).

TODO: proof
TODO: check if the properties are actually correct.


Source

Aluffi, p48
Aluffi, p49
Aluffi, p55