\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Group homomorphisms and order

Group homomorphisms and order

Let \( \varphi : G \to H \) be a group homomorphism, and let \( g \in G \) be an element of finite order. Then \( |\varphi(g)| \) divides \( |g| \).


Consequences

  • There are no non-trivial homomorphisms from \( \mathbb{Z}/n\mathbb{Z} \) to \( \mathbb{Z} \), as elements of \( \mathbb{Z}/n\mathbb{Z} \) would need to map to elements of finite order in \( \mathbb{Z} \), of which there is only the identity, \( 0 \).
  • There are no non-trivial homomorphisms from \( C_4 \) to \( C_7 \), as elements of \( C_7 \) other than the identity all have order 7, which doesn't divide 2 or 4 (the orders of non-identity elements of \( C_4 \)). 
  • In general, for a non-trivial group morphism \( C_n \to C_m \) to exist, \( \operatorname{gcd}(n, m) \) must be greater than 1 as elements of \( C_m \) must have an order that divides both \( |C_m| \) and \( |C_n| \).


Source

Aluffi, p66