\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \)
Math and science::Algebra::Aluffi

Group Isomorphism

Group isomorphism iff bijection

Let \( \varphi : G \to H \) be a group homomorphism. Then \( \varphi \) is a group isomorphism iff it is a bijection.


Proof

Proof.

Forward. \( \varphi \) is a set function, as group homomorphisms are defined as such. For \( \varphi \) to be an isomorphism, it must be a bijective function.

Reverse. We must show that \( \varphi \) has an inverse, and that its inverse is a group homomorphism from \( H \) to \( G \). \( \varphi \) has an inverse \( \varphi^{-1} \) because it is bijective. What remains is to show that \( \varphi^{-1} \) satisfies:

\[ \forall a,b \in H, \quad \varphi^{-1}(a \cdot b) = \varphi^{-1}(a) \cdot \varphi^{-1}(b) \]

Let \( a, b \) be elements of \( H \). Let \( a' = \varphi^{-1}(a) \) and \( b' = \varphi^{-1}(b) \). We then have:

\[ \begin{align} \varphi^{-1}(a \cdot b) &= \varphi^{-1}(\varphi(a') \cdot \varphi(b')) \\ &= \varphi^{-1}(\varphi(a' \cdot b') \\ &= a' \cdot b' \\ &= \varphi^{-1}(a) \cdot \varphi^{-1}(b) \\ \end{align} \]

The proof is simple, but not trivial, and in that sense, it is noteworthy.


Source

Aluffi, p66