\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \)
Math and science::Algebra::Aluffi

Isomorphisms of cyclic group products

Isomorphisms to a product of cyclic groups

If \( n \) and \( m \) are positive integers with \( \operatorname{gcd}(n, m) = 1\),
then \( \cat{C_{nm}} \cong \cat{C_n} \cat{C_m} \).

Proof on back side.

The proposition refers to cyclic groups, defined below:

Cyclic group

A group is cyclic iff it is isomorphic to \( \mathbb{Z} \) or \( \mathbb{Z}/n\mathbb{Z}\).


Proof essense

Consider \( nm = 6 \), \( n = 3 \) and \( m = 2 \). \( [1]_{6} \) generates \( \cat{C_6} \). \( [1]_{3} \) generates \( \cat{C_3} \). We can map \( \cat{C_6} \) to \( \cat{C_3} \) by mapping \( [1]^2_{6} \) to \( [1]_{3} \) to create a morphism \( \cat{C_6} \to \cat{C_3} \). Similarly, we can map \( [1]^3_{6} \) to \( [1]_{2} \) to create a morphism \( \cat{C_6} \to \cat{C_2} \).

Because 3 and 2 have no common divisor, incrementing \( [1]_3 \) and \( [1]_2 \) vicariously through \( [1]_{6} \) must continue for the full 6 elements of \( \cat{C_6} \) before both \( [1]_3 \) and \( [1]_2 \) loop back together on the identity, \( [0]_6 \). This means the morphism from \( \cat{C_6} \) to \( \cat{C_3} \times \cat{C_2} \) must be injective. Furthermore, \( \cat{C_3} \times \cat{C_2} \) only has 6 elements, so the morphism is also surjective. The morphism is thus a bijection.

TODO: actual proof

\( \cat{C_3} \times \cat{C_2} \) is a cyclic group

The cyclic group \( \cat{C_6} \) is isomorphic to \( \cat{C_3} \times \cat{C_2} \), so the latter is a cyclic group too.

3-4 example


Source

Aluffi, p69