\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\)
Math and science::Algebra::Aluffi
Isomorphisms of cyclic group products
Isomorphisms to a product of cyclic groups
If \( n \) and \( m \) are positive integers with [what condition?],
then \( \cat{C_{nm}} \cong \cat{C_n} \cat{C_m} \).
Proof on back side.
The proposition refers to cyclic groups, defined below:
Cyclic group
A group is cyclic iff
[what?] or [what?].