\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Groups. Lagrange's theorem.

Lagrange's theorem

Let \( G \) be a group, and let \( H \subset G \) be a subgroup. Then:

\[ |G| = |G\!/H| \; |H| \]

There are three corollaries on the reverse. Can you remember them?

  1. About the order of \( g \) in \( G \).
  2. When \( |G| \) is a prime.
  3. Fermat's little theorem.

\( |g| \) divides \( |G| \)

For any element \( g \in G \), \( |g| \) divides \( |G| \). In particular, \( |g| \) equals the order of the subgroup generated by \( g \).

As a result, \( g^{|G|} = e_G \) for any element in a finite group \( G \).

When \( |G| \) is a prime

If \( |G| \) is a prime \( p \), then we must have \( G \cong \mathbb{Z}\!/p\mathbb{Z} \).

Fermat's little theorem

Let \( p \) be a prime, and let \( a \) be an integer. Then \( a^{p} \equiv a \mod p \)

Note on Fermat's little theorem

If one expects to see \( a^{p+1} \) instead of \( a^{p} \), then realize that if one considers the sequence \( e, a, a^2, ... \), then the element \( a^{1} \) can be throught of as having already traversed two elements, \( e \) and \( a \). So, to cover all \( p \) elements and by back to \( e \) we only need \( a^{p-1} \), then another \( a \) brings us back to \( a \).


Source

Aluffi p105