\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\newcommand{\qed} { {\scriptstyle \Box} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra::Aluffi
Groups. Some properties of order.
Property 1
Suppose that \( g^2 = e \) for all elements \( g \) in group \( G \). Then
we can say that \( G \) is commutative.
Property 2
Suppose \( g \) is an element with odd order. Then \( |g^2| = |g| \)
Property 3
The order of \( [m]_n \) in \( \mathbb{Z}/n\mathbb{Z} \) is 1 if \( n | m \),
and more generally:
[\[ | [m]_n| = \frac{?}{\quad ? \quad } \] ]
Property 4
Following from property 3:
- The class \( [m]_n \) generates \( \mathbb{Z}/nZ \) iff [what?].
- the order of every element of \(
\mathbb{Z}/n\mathbb{Z} \) [what can be said here?].