\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Ring. As a group of group endomorphisms.

A fundamental way to motivate rings is via endomorphisms of a group.

A requirement of this construction is that the original group be abelian. The reason is captured below.

Setup

  • \( G \) is a group.
  • \( \groupAdd{G} : G \times G \to G \) is the group operation of \( G \).
  • \( \rho, \phi \in \operatorname{Endo}(G) \) are group endomorphisms.
  • \( + : \operatorname{Endo}(G) \times \operatorname{Endo}(G) \to \operatorname{Endo}(G) \) is the derived group operation of the ring.
  • \( a, b \in G \) are two elements of \( G \) and \( x = a \groupAdd{G} b \).

Requirement for \( + \)

The term \( \rho{\small{+}}\phi(x) \) decomposes in two ways, which must be equal.

Firstly, by definition of the new operation:

[\[ \begin{align*} \rho{\small{+} }\phi(x) &= \rho(x) \groupAdd{G} \phi(x) \\ &= \;\; ? \groupAdd{G} \;?\; \groupAdd{G} \;?\; \groupAdd{G} \;? \end{align*} \]]

And as \( + \) produces a group homomorphism:

[\[ \begin{align*} \rho{\small{+} }\phi(x) &= \rho{\small{+} }\phi(a) \groupAdd{G} \rho{\small{+} }\phi(b) \\ &= \;\; ? \groupAdd{G} \;?\; \groupAdd{G} \;?\; \groupAdd{G} \;? \end{align*} \]]

The requirement for these to decompositions to be equal is what restricts the construction to abelian groups.