\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Rings. Zero-divisors.

Zero-divisor

An element \( a \) in a ring \( (R, +, \cdot) \) is a left zero-divisor iff there exists an element \( b \neq 0 \) in \( R \) such that [\( \quad ? \;\; = \;\; ? \quad \)].

An element \( a \) in a ring \( (R, +, \cdot) \) is a right zero-divisor iff there exists an element \( b \neq 0 \) in \( R \) such that [\( \quad ? \;\; = \;\; ? \quad \)].

Lambda perspective

The left case describes the 2-input function \( \groupMul{R}: R \times R \to R \) having the first parameter fixed at \( a \). This forms a function \( m_a : R \to R \). Lambda calculus would call this partial application.

Injectivity and surjectivity

Not a left zero-divisor iff left-multiplication is injective

The partial application of \( \groupMul{R} : R \times R \to R \) by \( a \) as the first argument is an injective function iff \( a \) is not a left zero-divisor.

Can you recall the proof?

When a ring has finite elements, all of which are not zero-divisors, it is a [what?].