\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\newcommand{\qed} { {\scriptstyle \Box} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra::Aluffi
Subgroups of the general linear group
Below are three subgroups of \( \mathrm{GL}_n(\mathbb{R})\), the group of invertible
\( n\times n\) matrices with real entries.
- \( \mathrm{SL}_n(\mathbb{R})\)
- The subset of \( \mathrm{GL}_n(\mathbb{R})\) consisting of [what matricies?]. "S" is short for "special".
- \( \mathrm{O}_n(\mathbb{R})\)
- The subset of \( \mathrm{GL}_n(\mathbb{R})\) consisting of
[what matricies?].
"O" here is short for "orthogonal".
- \( \mathrm{SO}_n(\mathbb{R})\)
- The subset of \( \mathrm{O}_n(\mathbb{R})\) consisting of
[what matricies?].
Can you proof that these 3 subsets form subgroups?