\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra::Aluffi
Euler's \( \phi \)
Euler's \( \phi \)-function
Euler's \( \phi \)-function maps any positive integer \( m \) to the number of [what?]. In other words:
[
\[ \phi(m) = \left| \; \{ r \in \mathbb{N} : \quad ? \quad\} \; \right| \] ]
A related theorem:
Theorem. N = sum of relative primes of divisors of N.
\[ \sum_{m > 0, m | n} \phi(m) = n\]
Proof is on the reverse side.