\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Rings. Third isomorphism theorem, an example.

Let \( a, b \in R \) be elements in a commutative ring \( R \). Use \( ( \bar{b} ) \) to denote the equivalence class of \( b \) in \( R/(a) \). Then firstly we have:

\[ (\bar{b}) = \frac{(a,b)}{(a)} \]
<p>and with that result it can be seen that:</p>
\[ \frac{R/(a)}{(\bar{b})} \cong R/(a,b) \]

Recap of ring generators:

Ring generators

Let \( a \in R \) be an element of a ring. The subset \( Ra \) is a left-ideal and the subset \( aR \) is a right-ideal. If \( R \) is a commutative ring, the ideals coincide, and the syntax \( (a) \) is used to denote the ideal.


The third isomorphism theorem:

Third isomorphism theorem for rings.

Let \( R \) be a ring. Let \( I \) and \( J \) be ideals of \( R \), with \( I \) being a "smaller" ring contained within \( J \). Then:

  1. \( J/I \) is an ideal of \( R / I \)
  2. \[ R / J \cong \frac{R/I}{J/I} \]

And really, it's the general case that one should commit to intuition:

Isomorphism theorem for rings (general)

Let \( R \) and \( S \) be a rings, and let \( \varphi : R \to S \) be a ring homomorphism. \( \varphi \) induces an ideal \( \operatorname{ker}(\varphi) \). Consider two-sided ideals contained in \( \operatorname{ker}(\varphi) \). Let \( I \subseteq \operatorname{ker}(\varphi) \) be one of these ideals. Then there is a ring homomorphism \( \widetilde{\varphi} \) fully determined by \( \varphi \) and \( I \) such that the following diagram commutes:

\( \widetilde{\varphi} \) is defined as:

\[ \widetilde{\varphi}(r + I) = \varphi(r) \]