\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Rings. Uniqueness of polynomial division.

Two versions of the same idea: unique polynomial division.

Let \( R \) be a ring, \( R[x] \) be a polynomial ring and let \( f(x), g(x) \in R[x] \) be polynomials, with \( f(x) \) being a monic polynomial.

Then there exists a unique pair of polynomials \( q(x), r(x) \in R[x] \) where \( \operatorname{deg} r < \operatorname{deg} f \) such that:

\[ g(x) = q(x)f(x) + r(x)\]

In terms of cosets:

Let \( R \) be a ring, \( R[x] \) be a polynomial ring and let \( f(x), g(x) \in R[x] \) be polynomials, with \( f(x) \) being a monic polynomial.

Then there exists a unique polynomial \( r(x) \in R[x] \) where \( \operatorname{deg} r < \operatorname{deg} f \) such that:

[ \[g(x) + \; ? \; = r(x) + \; ?\]]

These theorems rely on a lemma showing polynomial long division to be unique when \( f(x) \) is monic. Can you remember the proof?