\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra::Aluffi

Group isomorphism: quotient of R[x] ≅ direct sum of R

In what way can we construct an isomorphism using \( R[x] \) and \( R \)?

If we restrict our aim to just a group isomorphism then we can achieve the following:

Let \( R \) be a commutative ring, \( R[x] \) a polynomial ring, and \( f(x) \in R[x] \) a polynomial. Let [\( \varphi: R[x] \to \;\; ? \; \) ] be a set function defined by sending \( g(x) \in R[x] \) to the tuple representation of the remainder of \( g(x) \) when divided by \( f(x) \).

Then this function induces an isomorphism of abelian groups:

[\[ \;?\;\; \cong \;\; ? \; \] ]

Can you construct the proof?

Extra:

  • How to construct the complex ring \( \mathbb{C} \)?
  • How to construct a ring of polynomial evaluations?