\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra

Eigenvectors of projection and reflection matricies

Let \( P \) and \( R \) be the projection and reflection matricies for a vector \( a \). \( P \) has eigenvalues \(1\) and \(0\), while \( R \) has eigenvalues \(1\) and \(-1\). We can also say \(P \) and \( R \) have the same eigenvectors.


Example

Let \( a = [1, 1] \), then

\[ P = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \]

and

\[ R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} .\]
Note that \( R = 2P - I \). The eigenvectors of both matricies are \( [1, 1] \) and \( [1, -1] \). \( P \) has corresponding eigenvalues 1 and 0, while \( R \) has corresponding eigenvalues 1 and -1.


Source

Introduction to Linear Algebra. Strang, p291.