\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra

Eigenvalues of a triangular matrix

The eigenvalues of the matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 6 \end{bmatrix} \]

are \(1, 4 \) and \( 6\).


This follows from:

\[ \det \begin{bmatrix}1 & 2 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 6 \end{bmatrix} = (\lambda -1 )(\lambda - 4)(\lambda - 6) =0 \]

This can also be seen by zero-ing the elements of candidate eigenvectors so that the effective matrix loses its later rows.