\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra
Eigenvalues of a triangular matrix
The eigenvalues of the matrix:
\[\begin{bmatrix}1 & 2 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 6 \end{bmatrix} \]
are \(1, 4 \) and \( 6\).
This follows from:
\[ \det \begin{bmatrix}1 & 2 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 6 \end{bmatrix} = (\lambda -1 )(\lambda - 4)(\lambda - 6) =0 \]
This can also be seen by zero-ing the elements of candidate eigenvectors so that the effective matrix loses its later rows.
-->