\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra

LU decomposition

Let \( A \) be a 3x3 square invertible matrix. Elimination on \( A \) by a sequence of elimination matrices \( E_{21}, E_{31} \) and \( E_{32} \) results in an upper triangular matrix \( U \):

\[ E_{32} E_{31} E_{21} A = U \]

We can combine the elimination matrices together:

\[ E = E_{32} E_{31} E_{21} \]

and invert to arrive at the LU decomposition:

\[ A =  E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U =E^{-1} U = LU \]

The elements of the matrix \( L \) have a very direct interpretation, arguably more interpretable than those of \( E \). If \( l_{21}, l_{31} \) and \( l_{32} \) are the scalars by which the first and second rows are subtracted from the rows below, then we can express \( L \) as:

[\[ L = \begin{bmatrix} ? & 0 & 0 \\ ? & 1 & 0 \\ ? & ? & 1 \\ \end{bmatrix} \]]