\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \newcommand{\qed} { {\scriptstyle \Box} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Algebra

Markov matrices and their eigenvectors. An NZ-AU immigration example.

What is the population of Australia and New Zealand after 100 years of the following migration pattern? Starting with 1 million people in Australia and no one in New Zealand.

To start things off, the transition is described by:

[\[ \begin{bmatrix} \text{Australia}_{t+1} \\ \text{New Zealand}_{t+1} \end{bmatrix} = \begin{bmatrix} ? \, & ? \, \\ ? \, & ? \, \end{bmatrix} \begin{bmatrix} \text{Australia}_{t} \\ \text{New Zealand}_{t} \end{bmatrix} \] ]

Continue on the reverse. How does \( XVX^{-1} \) come up?