\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\newcommand{\qed} { {\scriptstyle \Box} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra
Markov matrices and their eigenvectors. An NZ-AU immigration example.
What is the population of Australia and New Zealand after 100 years of
the following migration pattern? Starting with 1 million people in Australia
and no one in New Zealand.
To start things off, the transition is described by:
[\[
\begin{bmatrix}
\text{Australia}_{t+1} \\
\text{New Zealand}_{t+1}
\end{bmatrix}
=
\begin{bmatrix}
? \, & ? \, \\
? \, & ? \,
\end{bmatrix}
\begin{bmatrix}
\text{Australia}_{t} \\
\text{New Zealand}_{t}
\end{bmatrix}
\] ]
Continue on the reverse. How does \( XVX^{-1} \) come up?