\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra
Singular value decomposition
Singular value decomposition (SVD)
Let A be an \( m \times n \) matrix. SVD decomposes \( A \) as:
[\[
A = \;\; ?
\]]
where \( U \) and \( V \) are [what type?] matrices and \(
\Sigma \) is a [what type?] matrix with non-negative real
numbers on the diagonal. The diagonal entries of \( \Sigma \) are called
the singular values of \( A \).
Assuming this decomposition of \( A \) is possible, how can we
find \( U \), \( \Sigma \), and \( V \)?
What is a geometric interpretation of the SVD?