\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\newcommand{\qed} { {\scriptstyle \Box} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Algebra
Sobel operator
The Sobel operator is a first-difference applied after a smoothing.
It can be thought of as a solution to problem that the first difference can be too sensitive to noise.
Convolution matrices, horizontal and vertical
[\[
S_x =
\begin{bmatrix}
? & 0 & ? \\
? & 0 & ? \\
? & 0 & ?
\end{bmatrix}, \quad
S_y \;=\;
\begin{bmatrix}
? & ? & ? \\
0 & 0 & 0 \\
? & ? & ?
\end{bmatrix}
\]]