\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::05. The real numbers

ε-close sequences

Let \( (a_n)_{n=0}^{\infty} \) and \( (b_n)_{n=0}^{\infty} \) be two sequences and let \( \varepsilon > 0 \) be a rational. \( (a_n)_{n=0}^{\infty} \) is said to be ε-close to \( (b_n)_{n=0}^{\infty} \) iff \( a_k \) is ε-close to \( b_k \) for all \( k \ge 0 \).

In other words, the sequence \( a_0, a_1, a_2, ... \) is ε-close to the sequence \( b_0, b_1, b_2, ... \) iff \( |a_k - b_k| \le \varepsilon \) for all \( k = 0, 1, 2, ... \). 


From sequences to reals

sequence → ε-steady sequence → eventually ε-steady sequence → Cauchy sequence → ε-close sequences → eventually ε-close sequences → equivalent sequences → real numbers.

Example

The two sequences:

\[ 1, -1, 1, -1, 1, ... \]
and
\[ 1.1, -1.1, 1.1, -1.1, 1.1, ... \]
are 0.1-close to each other. Note how neither of the sequences are 0.1-steady.  


Source

Tao, Analysis I