\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::05. The real numbers

Eventual ε-steadiness

Let \( \varepsilon > 0 \) be a rational. A sequence \( (a)_{n=m}^{\infty} \) is eventually ε-steady iff the sequence \( a_N, a_{N+1}, a_{N+2}, ... \) is ε-steady for some integer \( N \ge m \)

In other words, a sequence \( (a)_{n=m}^{\infty} \) is eventually ε-steady iff there exists an integer \( N \ge m \)  such that \( |a_j - a_k| \le \varepsilon \) for all \( j, k \ge N \).

From sequences to reals

sequence → ε-steady sequence → eventually ε-steady sequence → Cauchy sequence → ε-close sequences → eventually ε-close sequences → equivalent sequences → real numbers.

Example

The sequence \( 1, 0.1, 0.001, ... \) is not 0.1-steady, but is eventually 0.1-steady. The sequence \( 10, 0, 0, 0, ... \) is not ε-steady for any ε less than 10, but it is eventually ε-steady for every \( \varepsilon > 0 \).


Source

Tao, Analysis I