\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis::Tao::05. The real numbers
\( n^{th} \) root of a real
The definition of the n
th root of a real utilizes the supremum, hence why the \( n^{th} \) doesn't exist for rationals.
Let \( 0 \ge x \) be a non-negative real. Let E be the set [\( E = \{ ? \} \)]. We define the \( n^{th} \) root of \( x \), denoted as \( x^{\frac{1}{n}} \), to be \( x^{\frac{1}{n}} := \sup E \). Thus,
[\[ x^{\frac{1}{n} } := \sup\{y \in \mathbb{R} : ? \] ]