\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::06. Limits of sequences

Limit laws

Let \( (a_n)_{n=1}^{\infty} \) and \( (b_n)_{n=1}^{\infty} \) be sequences of reals that converge to the reals \( x \) and \( y \) respectively. i.e.
\[ \lim_{n\to\infty}a_n = x \\   \lim_{n\to\infty}b_n = y \]
The 8 basic limit laws are:

1. Addition. The sequence \( (a_n + b_n)_{n=m}^{\infty} \) converges to \( x + y \). In other words,
\[ \lim_{n\to\infty}(a_n + b_n) = \lim_{n\to\infty}a_n + \lim_{n\to\infty}b_n \]

2. Multiplication. The sequence \( (a_n b_n)_{n=m}^{\infty} \) converges to \( xy \). In other words,
\[ \lim_{n\to\infty}(a_n b_n) = (\lim_{n\to\infty}a_n)(\lim_{n\to\infty}b_n) \]

3. Constant multiplication. The sequence \( (c a_n)_{n=m}^{\infty} \) converges to \( cx \). In other words,
\[ \lim_{n\to\infty}(ca_n) = c(\lim_{n\to\infty}a_n) \]

4. Subtraction. The sequence \( (a_n - b_n)_{n=m}^{\infty} \) converges to \( x - y \). In other words,
\[ \lim_{n\to\infty}(a_n - b_n) = \lim_{n\to\infty}a_n - \lim_{n\to\infty}b_n \]

5. Reciprocation. Suppose \( y \ne 0 \) and \( b_n \ne 0 \) for all \( n \ge m \). Then the sequence \( (b_n^{-1})_{n=m}^{\infty} \) converges to \( y^{-1}  \). In other words,
[...]

6. Division. Suppose \( y \ne 0 \) and \( b_n \ne 0 \) for all \( n \ge m \). Then the sequence \( (\frac{a_n}{b_n})_{n=m}^{\infty} \) converges to \( \frac{x}{y} \). In other words, 

[...]

7. The sequence \( (\max(a_n, b_n))_{n=m}^{\infty} \) converges to \( \max(x,y) \); in other words,
[...]

8. The sequence \( (\min(a_n, b_n))_{n=m}^{\infty} \) converges to \( \min(x,y) \); in other words,
[...]