\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis::Tao::06. Limits of sequences
Limit points
Let \( (a_n)_{n=m}^{\infty} \) be a sequence of real numbers, let x be a real number, and let \( \epsilon > 0 \) be a real number. We say that \( x \) is ε-adherent to \( (a_n)_{n=m}^{\infty} \) iff there
exists an \( n \ge m \) such that
[...]. We say that \( x \) is continually ε-adherent to \( (a_n)_{n=m}^{\infty} \) if it is ε-adherent to
[...] for every \( N \ge m \). We say that \( x \) is a limit point or adherent point of \( (a_n)_{n=m}^{\infty} \) if it is continually ε-adherent to
[...] for every
[...].
How are limit points different to limits?