\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\newcommand{\qed} { {\scriptstyle \Box} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis::Tao::06. Limits of sequences
Limit superior and limit inferior
Suppose that \( (a_n)_{n=m}^{\infty} \) is a sequence. We define a new sequence \( (a_N^+)_{N=m}^{\infty} \) by the formula:
\[ a_N^+ := \sup(a_n)_{n=N}^{\infty} \]
In other words, \( a_N^+ \) is the supremum of all the elements in the sequence from \( a_N \) onwards.
We then define the limit superior of the sequence \( (a_n)_{n=m}^{\infty} \), denoted by \( \limsup_{n\rightarrow \infty}a_n \), by the formula:
[...]
The mirror proceedure defines the limit inferior. First define:
\[ a_N^- := \inf(a_n)_{n=N}^{\infty} \]
The the limit inferior is:
[...]