\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::06. Limits of sequences

Subsequences, definition

Let \( (a_n)_{n=0}^{\infty} \) and \( (b_n)_{n=0}^{\infty} \) be sequences of reals. We say that \( (b_n)_{n=m}^{\infty} \) is a subsequence of \( (a_n)_{n=m}^{\infty} \) if there exists a function \( f: \mathbb{N} \rightarrow \mathbb{N} \) which is strictly increasing (i.e., \( f(n+1) > f(n) \) for all \( n \in \mathbb{N} \)) such that

\[ b_n = a_{f(n)} \text{ for all } n \in \mathbb{N} \]

Given how sequences were originally defined in terms of functions, a more explicit definition would be:

Let \( (a_n)_{n=0}^{\infty} \) be the sequence represented by the function \( g: \mathbb{N} \rightarrow \mathbb{R} \). If \( f: \mathbb{N} \rightarrow \mathbb{N} \) is strictly increasing, then the sequence defined by \( g \circ f \) is a subsequence of \( (a_n)_{n=0}^{\infty} \).


We use 0 as the starting index to make the definition simple.


Lemma 6.6.4
Let \( (a_n)_{n=0}^{\infty} \), \( (b_n)_{n=0}^{\infty} \) and \( (c_n)_{n=0}^{\infty} \) be sequences of real numbers. Then \( (a_n)_{n=0}^{\infty} \) is a subsequence of \( (a_n)_{n=0}^{\infty} \). Furthermore, if \( (b_n)_{n=0}^{\infty} \) is a subsequence of \( (a_n)_{n=0}^{\infty} \) and \( (c_n)_{n=0}^{\infty} \) is a subsequence of \( (b_n)_{n=0}^{\infty} \), then \( (c_n)_{n=0}^{\infty} \) is a subsequence of \( (a_n)_{n=0}^{\infty} \).


Source

p150