\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::06. Limits of sequences

Subsequences and limits, proposition

Subsequences and limits

Let \( (a_n)_{n=0}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Then the the following two statements are logically equivalent:

  • The sequence \( (a_n)_{n=0}^{\infty} \) converges to \( L \).
  • Every subsequence of \( (a_n)_{n=0}^{\infty} \) converges to \( L \).

Subsequences related to limit points

Let \( (a_n)_{n=0}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Then the following two statements are logically equivalent:

  • \( L \) is a limit point of \( (a_n)_{n=0}^{\infty} \)
  • There exists a subsequence of \( (a_n)_{n=0}^{\infty} \) which converges to \( L \).

These two propositions show a sharp contrast between limits and limit points.


Source

p151