\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\newcommand{\qed} { {\scriptstyle \Box} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis::Tao::06. Limits of sequences
Subsequences and limits, proposition
Subsequences and limits
Let \( (a_n)_{n=0}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Then the the following two statements are logically equivalent:
- The sequence \( (a_n)_{n=0}^{\infty} \) converges to \( L \).
- [...]
Subsequences related to limit points
Let \( (a_n)_{n=0}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Then the following two statements are logically equivalent:
- [...]
- There exists a subsequence of \( (a_n)_{n=0}^{\infty} \) which converges to \( L \).