\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::07. Series

Finite series, definition

Let \( m, n \) be integers, and let \( (a_i)_{i=n}^{m} \) be a finite sequence of real numbers, assigning a real number \( a_i \) for each integer \( i \) between \( n \) and \( m \) inclusive (i.e. \( m \le i \le n \)). Then we define the finite sum (or finite series) \( \sum_{i=m}^{n} a_i \) by the recursive formula

\[\begin{aligned}\sum_{i=m}^{n} a_i &= 0 \text{ whenever } n < m; \\\sum_{i=m}^{n+1} a_i &= \left(\sum_{i=m}^{n} a_i\right) + a_{n+1} \text{ whenever } n + 1 \ge m.\end{aligned}\]



The series is often less formally expressed as:

\( \sum_{n}^{i=m} a_i = a_m + a_{m+1} + ... + a_n \)

Semantically, "series" refers to the expression of the form \( \sum_{n}^{i=m} a_i \), which is mathematically, but not semantically equal to a real number, which is called the "sum" of the series. This is a linguistic distinction, and a distinction that is not pertinant in mathematics due to the axiom of substitution. 

Example

\[
\begin{aligned}
\sum_{i=m}^{m-2} a_i &= 0\\
\sum_{i=m}^{m-1} a_i &= 0\\
\sum_{i=m}^{m} a_i &= a_m\\
\sum_{i=m}^{m+1} a_i &= a_m + a_{m+1} \\
\sum_{i=m}^{m+2} a_i &= a_m + a_{m+1} + a_{m+2}\end{aligned}\]


Source

p156-157