\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::07. Series

Finite series, definition

Let \( m, n \) be integers, and let \( (a_i)_{i=n}^{m} \) be a finite sequence of real numbers, assigning a real number \( a_i \) for each integer \( i \) between \( n \) and \( m \) inclusive (i.e. \( m \le i \le n \)). Then we define the finite sum (or finite series) \( \sum_{i=m}^{n} a_i \) by the recursive formula

\[\begin{aligned}\sum_{i=m}^{n} a_i &= 0 \text{ whenever } n < m; \\\sum_{i=m}^{n+1} a_i &= [...] \text{ whenever } [...].\end{aligned}\]