\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis::Tao::07. Series
Summation over finite sets, definition
Let \( X \) be a set with \( n \in \mathbb{N} \) elements and let \( f: X \rightarrow \mathbb{N} \) be a function from \( X \) to the real numbers. Then we define the finite sum \( \sum_{x \in X} f(x) \) as follows.
Select any [...] \( g \) from \( \{i \in \mathbb{N} : 1 \le i \le n \} \) to \( X \). Such a [...] exists since \( X \) is assumed to have \( n \) elements. We then define:
\[ \sum_{x \in X} f(x) := \sum_{i=1}^{n}[...] \]