\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Analysis::Tao::07. Series

Summation over finite sets, definition

Let \( X \) be a set with \( n \in \mathbb{N} \) elements and let \( f: X \rightarrow \mathbb{N} \) be a function from \( X \) to the real numbers. Then we define the finite sum \( \sum_{x \in X} f(x) \) as follows.

Select any [...] \( g \) from \( \{i \in \mathbb{N} : 1 \le i \le n \} \) to \( X \). Such a [...] exists since \( X \) is assumed to have \( n \) elements. We then define:
\[ \sum_{x \in X} f(x) := \sum_{i=1}^{n}[...] \]