\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Analysis::Tao::07. Series

Infinite series, definition

Tao breaks the definition into two pieces (reasons discussed on flip side). I present the 2nd part first. See the flip side for the initial definition of a formal series.

Convergence of series, definition

Let \( \sum_{n=m}^{\infty} a_n \) be a formal infinite series. For any integer \( N \ge m \), we define the Nth partial sum \( S_N \) of this series to be

[...]

\( S_N \) is thus a real number.

If the sequence [...] converges to some limit \( L \), then we say that the infinite series \( \sum_{n=m}^{\infty} a_n \) is convergent, and converges to \( L \). We then write

\[ L = \sum_{n=m}^{\infty} a_n \]

and say that \( L \) is the sum of the infinite series \( \sum_{n=m}^{\infty} a_n \). If the sequence of partial sums \( (S_N)_{N=m}^{\infty} \) diverge, then we say that the infinite series \( \sum_{n=m}^{\infty} a_n \) is divergent, and we [...].