\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::07. Series

Absolute convergence, and the absolute convergence test 

Absolute convergence, definition

Let \( \sum_{n=m}^{\infty}a_n \) be a formal series of real numbers. The series is said to be absolutely convergent if the series [...] is [...].

In order to distinguish convergence from absolute convergence, we sometimes refer to the former as [...] convergence.

Absolute convergence test

Let \( \sum_{n=m}^{\infty}a_n \) be a formal series of real numbers. If the series is [...], then it is also [...]. Furthermore, in this case we have the triangle inequality

\[ \left| \sum_{n=m}^{\infty}a_n \right| \le \sum_{n=m}^{\infty}|a_n| \]

Note that the converse of this proposition is not true; there exists series that are conditionally convergent but are not absolutely convergent.