\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Intervals (of the reals), definition

Let \( a, b \in \mathbb{R}^* \) be extended real numbers.

We define the closed interval \( [a, b] \) by

\[ [a, b] := \{ x \in \mathbb{R}^* : a \leq x \leq b\} \]

We define the half-open intervals \( [a, b) \) and \( (a, b] \) by

\( [a, b) := \{x \in \mathbb{R}^* : a \leq x \leq b\}; \) and \( (a, b] := \{x \in \mathbb{R}^* : a \le x \leq b \} \)

And we define the open interval \( (a, b) \) by

\[ (a, b) := \{ x \in \mathbb{R}^* : a < x < b \} \]

We call \( a \) the left endpoint and \( b \) the right endpoint.


If \( a \) and \( b \) are real numbers (not \( \infty \) or \( -\infty \)), then all intervals above are subsets of the real line.

The real line itself is the open interval \( (-\infty, \infty) \), and the extended real line is the closed interval \( [-\infty, \infty] \).

We sometimes refer to intervals where one endpoint is infinite as being a half-infinite interval, and intervals where both endpoints are infinite as being a double-infinite interval; all other intervals are bounded intervals.


Source

p213