\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Closure, definition 

To define a closure, we will utilize ε-adherent points and adherent points. Sets of reals have adherent points analogous to sequences of reals having limit points.

ε-adherent point

Let \( X \) be a subset of \( \mathbb{R} \), let \( \varepsilon > 0 \) be a real and \( x \in \mathbb{R} \) be another real. We say that \( x \) is ε-adherent to \( X \) iff there exists a \( y \in X \) which is ε-close to \( x \) (i.e. \( |x - y| \leq \varepsilon \) ).

Adherent point

Let \( X \) be a subset of \( \mathbb{R} \), and let \( x \in \mathbb{R} \) be a real. We say that \( x \) is an adherent point of \( X \) iff it is ε-adherent to \( X \) for every \( \varepsilon > 0 \).

Closure

Let \( X \) be a subset of \( \mathbb{R} \). The closure of \( X \), sometimes denoted as \( \overline{X} \), is defined to be the set of all adherent points of \( X \).


Example

The number 1 is ε-adherent to the open interval (0, 1) for every \( \varepsilon > 0 \), and is thus an adherent point of the interval (0, 1). The number 2, in comparison is not 0.5-adherent to (0,1), so can't be an adherent point of the interval.

The closure of \( \mathbb{N} \) is \( \mathbb{N} \). The closure of \( \mathbb{Z} \) is \( \mathbb{Z} \). The closure of \( \mathbb{Q} \) is \( \mathbb{R} \). And the closure of \( \mathbb{R} \) is \( \mathbb{R} \). The closure of \( \emptyset \) is \( \emptyset \).

Closures of intervals

  • Closure of \( (a, b), [a, b), (a, b], \text{ and } [a, b] \) is \( [a, b] \)
  • Closure of \( (a, \infty) \) or \( [a, \infty) \) is \( [a, \infty) \)
  • Closure of \( (-\infty, a) \) or \( (-\infty, a] \) is \( (-\infty, a] \)
  • Closure of \( (-\infty, \infty) \) is \( (-\infty, \infty) \)


Source

p214