\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Continous functions

Let \( X \) be a subset of \( \mathbb{R} \), and let \( f: X \to \mathbb{R} \) be a function. Let \( x_0 \) be an element of \( X \). We say that \( f \) is continuous at \( x_0 \) iff we have:

[\[\text{some limit = what?}\]]

in other words, the limit of \( f(x) \) as \( x \) converges to \( x_0 \) in X [...].

We say that \( f \) is continuous on \( X \) (or simply continuous) iff \( f \) is continuous at \( x_0 \) for every \( x_0 \in X \). We say that \( f \) is discontinous at \( x_0 \) iff it is not continous at \( x_0 \).

Tao describes this definition as one of the most fundamental notions in the theory of functions.

Question: what is Dirichlet's function and what is Thomae's function? How do they relate to function continuity?