\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::09. Continuous functions on R

The intermediate value theorem

Continuous functions whose domain is closed enjoy two useful properties:

  • the maximum principle
  • the intermediate value theorem

This card covers the second.

Intermediate value theorem (my version)

Let \( a < b \) be reals, let \( X = [a, b] \), and let \( f: X \to \mathbb{R} \) be a continuous function.

Then for every \( y \in [f_{min}, f_{max}] \), where \( f_{min} \) and \( f_{max} \) are the minimum and maximum obtained by \( f \) (which exist by the maximum principle), there is an \( x \in [a, b] \) such that \( f(x) = y \) .


Intermediate value theorem (standard version)

Let \( a < b \) be reals, let \( X = [a, b] \), and let \( f: X \to \mathbb{R} \) be a continuous function. Let \( y \) be a real between \( f(a) \) and \( f(b) \), in other words, \( min(f(a), f(b)) \ge y \ge max(f(a), f(b)) \).

Then there exists a \( c \in [a, b] \) such that \( f(c) = y \).

Proof: TODO


Source

p239-240