\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Monotonic functions

Let \( X \subseteq \mathbb{R} \) and \( f : X \to \mathbb{R} \) be a function.

We say that \( f \) is monotone increasing iff \( f(y) \ge f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is strictly monotone increasing iff \( f(y) > f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is monotone decreasing iff \( f(y) \le f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is strictly monotone decreasing iff \( f(y) < f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is monotone iff \( f \) is monotone increasing or monotone decreasing.

We say that \( f \) is strictly monotone iff \( f \) is strictly monotone increasing or strictly monotone decreasing.

Some properties of monotic functions

  • Function continuity implies monotonicity? No
  • Function monotinicity implies continuity? No
  • Monotone functions on a closed interval obey the maximum principle (with continuity requirement ignored)? Yes
  • Monotone functions on a closed interval obey the intermediate value principle (with continuity requirement ignored)? No
  • If a function is strictly monotone and continuous, then one very nice property is that it is invertible.

Strictly monotone and continuous implies invertable

Let \( a < b \) be real numbers, and let \( f: [a, b] \to \mathbb{R} \) be a function which is both continuous and strictly monotone increasing.

Then \( f \) is a bijection from \( [a, b] \) to \( [f(a), f(b)] \), and the inverse \( f^{-1}: [f(a), f(b)] \to [a, b] \) is also continuous and strictly monotone increasing.

The same can be said replacing 'increasing' with 'decreasing'.

Example

TODO


Source

p242