\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Limits at infinity (for continuous function)

Formulations of the limit \( \lim_{x \to x_0; x \in X \cap E}f(x) \) for a function \( f : X \to \mathbb{R} \), where \( E \subseteq X \subseteq \mathbb{R} \), so far have covered the case where \( x \to x_0 \) where \( x_0 \) is a real number. Below, the idea is extended to describe what it means for limits of \( f \) when \( x_0 \) equals \( +\infty \) or \( -\infty \).

Infinite adherent points

Let \( X \subseteq \mathbb{R} \).

We say that \( +\infty \) is adherent to \( X \) iff [...].

We say that \( -\infty \) is adherent to \( X \) iff [...].

In other words, \( +\infty \) is adherent to \( X \) iff \( X \) has no upper bound, or equivalently, [ \( ? = +\infty \)]. Similarly, \( -\infty \) is adherent to \( X \) iff \( X \) has no lower bound, or equivalently, [\( ? = -\infty \)].

So a set is [...] iff \( +\infty \) and \( -\infty \) are not adherent points.

Limits at infinity

Let \( X \subseteq \mathbb{R} \) with \( +\infty \) being an adherent point, and let \( f: X \to \mathbb{R} \) be a function.

We say that \( f \) converges to \( L \) as \( x \to +\infty \) in \( X \), and write \( \lim_{x \to +\infty} f(x) = L \) iff

[...]

A similar formulation can be made for \( x \to -\infty \).