\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::10: Differentiation of functions

Differentiability ⇒ continuity

Differentiability implies continuity

Let \( X \) be a subset of \( \mathbb{R} \), and let \( f : X \to \mathbb{R} \) be a function. Let \( x_0 \) be an element of X and a limit point of \( X \). If \( f \) is differentiable at \( x_0 \) on \( X \), then \( f \) is continuous at \( x_0 \).

Tao's definition of function continuity includes the assumption that the limit is being taken over \( X \), hence why 'on \( X \) is missing from the end of the proposition above.

The definition of differentiation on a domain along with the proposition above that differentiability implies continuity brings us to an immediate corollary.

Let \( X \) be a subset of \( \mathbb{R} \) and let \( f : X \to \mathbb{R} \) be a function. If \( f \) is differentiable on \( X \), then \( f \) is continuous.

I'm not quite sure why Tao decides to now include the idea of 'continuity on X'.



Source

p255