\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \)
Math and science::Analysis::Tao, measure::02. Lebesgue measure

Lebesgue outer measure. Finite additivity (for separated sets)

For Lebesgue outer measure, we left Pallet Town, so to speak, with just three properties: the measure of an empty set is zero, monotonicity and [something]. Our next step is additivity, though a restricted version of additivity: restricted to the union of just two sets, and the sets must be [something].

Separated sets in \( \mathbb{R}^d \)

Let \( E, F \subset \mathbb{R}^d \) be such that \( \operatorname{dist}(E, F) > 0 \), where \( \operatorname{dist}(E, F) \) is the distance between \( E \) and \( F \), defined as:

\[ \operatorname{dist}(E, F) := \inf(\{ |x - y| : x \in E, y \in F \} ) \]

When \( \operatorname{dist}(E,F) > 0 \), \( E \) and \( F \) are said to be separated sets.

Let \( E, F \subset \mathbb{R}^d \) be separated sets (\( \operatorname{dist}(E, F) > 0 \)). Then [what can we say about the Lebesgue outer measure?].