\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\newcommand{\groupMul}[1] { \cdot_{\small{#1}}}
\newcommand{\groupAdd}[1] { +_{\small{#1}}}
\newcommand{\inv}[1] {#1^{-1} }
\newcommand{\bm}[1] { \boldsymbol{#1} }
\require{physics}
\require{ams}
\require{mathtools}
\)
Math and science::Analysis::Tao, measure::02. Lebesgue measure
Outer Lebesgue measure of countable union of almost disjoint boxes
If a set is expressible as a countable union of almost disjoint boxes, then
what is it's outer Lebesgue measure?
Outer Lebesgue measure of countable union of almost disjoint boxes
Let \( E = \bigcup_{n=1}^{\infty} B_n \) be a countable union of almost
disjoint boxes. Then
[\[ m^*(E) = \quad ? \]]
What else equals the RHS above? We can say the following:
For a countable union of disjoint boxes, the Lebesgue outer measure is equal
to the Jordan inner measure.