\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \newcommand{\E} {\mathrm{E}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \newcommand{\groupMul}[1] { \cdot_{\small{#1}}} \newcommand{\groupAdd}[1] { +_{\small{#1}}} \newcommand{\inv}[1] {#1^{-1} } \newcommand{\bm}[1] { \boldsymbol{#1} } \require{physics} \require{ams} \require{mathtools} \)
Math and science::Analysis::Tao::05. The real numbers

Nested intervals property for reals

Nested interval property

A sequence of nested closed intervals of reals has a nonempty intersection.

In other words, if one considers a sequence of nested closed intervals \( (I_n)_{n=0}^{\infty} \) such that for each \( n \in \mathbb{N} \), \( I_n = [a_n, b_n] \) for some \( a_n, b_n \in \mathbb{R} \) and \( I_{n+1} \subseteq I_n \), then It holds that \( \cap_{n=1}^{\infty} I_n \neq \emptyset \).

Proof on the reverse.


Proof

The proof uses the property that sets of reals have a supremum; this is used to find an \( x \in \mathbb{R} \) such that \( x \in \cap_{n=0}^{\infty} I_n \).

Proof. Let \( A = \{a_n : n \in \mathbb{N} \} \) be the set of left-endpoints for the intervals. Note that for every \( i \in \mathbb{N} \), \( b_i \) is an upper bound for \( A \). Let \( x = \sup A \).

  • \( \forall i \in \mathbb{N}, x \le b_i \), as \( x \) is the least upper bound for \( A \), and every \( b_i \) is an upper bound.
  • \( \forall i \in \mathbb{N}, x \ge a_i \), as \( x \) is an upper bound for \( A \) and all \( a_i \in A \).

So, we have \( \forall i \in \mathbb{N}, a_n \le x \le b_n \), which means that \( \forall i \in \mathbb{N}, x \in I_n \), and furthermore, \( x \in \cap_{n=0}^{\infty} I_n \) meaning that this intersection is not empty.

Visualization of the interval endpoints


Source

Abbott, p20